Upper Secondary
Additional Mathematics

Additional Mathematics is known for being rigorous and confusing — but it's also incredibly rewarding. We support students in building a strong foundation in algebra, calculus, and trigonometry, while developing the problem-solving mindset needed for O-Level success. Our lessons focus on structure, clarity, and technique, helping students turn complex-looking problems into something they can handle with confidence and logic.

Our Approach

Our Additional Mathematics philosophy

Additional Mathematics isn't just a subject — it's a way of thinking logically, solving problems methodically, and building resilience in the face of challenging questions. We believe every student can learn to approach complex problems with clarity and structure, given the right guidance and space to grow. At Inflex, we focus on making each topic manageable, connecting new ideas to prior knowledge, and building confidence through step-by-step understanding.

subject

Thinking in Steps

We teach students to break down complex math problems into logical steps — a skill that builds confidence in exams and in life

Growth Through Struggle

We help students embrace challenge and develop resilience — because deeper understanding comes from working through difficulty.

Consistency Over Cramming

We focus on steady progress through practice and reflection — because mastery takes time, not shortcuts.

Comprehensive Curriculum

Additional Mathematics Syllabus

Algebra

Master essential algebraic techniques, including solving equations, simplifying expressions, and analysing functions. These skills are foundational for success in O-Level exams and higher-level mathematics.

Quadratic Functions

Learn to solve quadratic equations using factorisation, completing the square, and the quadratic formula, and analyse graphs of parabolas.

Formulas
General Form for Quadratic Equation
y=ax2+bx+cy=ax^2+bx+c
Factorised Form for Quadratic Equation
y=a(xp)(xq)y=a(x-p)(x-q)
Complete the Square
y=x2+bx+cy=x2+bx+(b2)2(b2)2+cy=(x+b2)2(b2)2+cy=x^2+bx+c \\ y=x^2+bx+(\frac{b}{2})^2-(\frac{b}{2})^2+c \\ y=(x+\frac{b}{2})^2-(\frac{b}{2})^2+c
Ensure coefficient of x2x^2 is 1

Equations and Inequalities

Solve linear and quadratic equations and inequalities. Interpret solutions on number lines and understand how the discriminant affects the nature of quadratic roots.

Formulas
Quadratic Formula
ax2+bx+c=0x=b±b24ac2aax^2+bx+c = 0 \\ x=\dfrac{-b \pm \sqrt{b^2-4ac}}{2a}
Discriminant Summary
DiscriminantNumber of rootsIntersection with x-axis
b24ac<0b^2 - 4ac < 0No real rootsCurve does not intersect x-axis
b24ac=0b^2 - 4ac = 01 real and distinctCurve touches x-axis once
b24ac>0b^2 - 4ac > 02 real and distinctCurve cuts x-axis twice

Surds

Simplify and manipulate surds using standard rules. Learn how to rationalise denominators and work with conjugate surds to find exact values.

Formulas
Laws of Surds
LawRule
Law 1a×b=a×b\sqrt{a \times b}=\sqrt{a} \times \sqrt{b}
Law 2ab=ab\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{a}}{\sqrt{b}}
Law 3a×a=a\sqrt{a} \times \sqrt{a}=a
Adding and subtracting of surds: ma±na=(m±n)am\sqrt{a}\pm n\sqrt{a}=(m \pm n) \sqrt{a}
Conjugate Surds
SurdConjugateResult of multiplying conjugate pairs
h+ah+\sqrt{a}hah - \sqrt{a}h2ah^2-a
h+kah+k\sqrt{a}hkah-k\sqrt{a}h2k2ah^2-k^2a
a+b\sqrt{a}+\sqrt{b}ab\sqrt{a}-\sqrt{b}aba-b
ha+kbh\sqrt{a}+k\sqrt{b}hakbh\sqrt{a}-k\sqrt{b}h2ak2bh^2a-k^2b
Note: a2b2=(a+b)(ab)a^2-b^2=(a+b)(a-b)

Polynomials and Partial Fractions

Factorise polynomials using the Remainder and Factor Theorems. Perform polynomial division and decompose rational expressions into partial fractions.

Formulas
Examples of Polynomials
TypeGeneral Form
Linearax+bax+b
Quadraticax2+bx+cax^2+bx+c
Cubicax3+bx2+cx+dax^3+bx^2+cx+d
Division Algorithm
dividend = divisor ×\times quotient ++ remainder
Remainder Theorem
f(ba)f(-\frac{b}{a}) is the remainder when f(x)f(x) is divided by (ax+b)(ax+b)
Factor Theorem
(ax+b)(ax+b) is a factor of f(x)f(x) if f(ba)=0f(-\frac{b}{a})=0
Cubic Identity
a3±b3=(a±b)(a2ab+b2)a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)
Proper and Improper fractions P(x)Q(x)\bm{\frac{P(x)}{Q(x)}}
P(x)Q(x)\frac{P(x)}{Q(x)}Meaning
Degree of P(x)P(x) << Degree of Q(x)Q(x)Proper fraction
Degree of P(x)P(x) \geq Degree of Q(x)Q(x)Improper fraction
To convert improper fractions to proper fractions, use long division.
Partial Fractions
DenominatorPartial Fraction
P(x)(ax+b)(cx+d)\dfrac{P(x)}{(ax+b)(cx+d)}Aax+b+Bcx+d\dfrac{A}{ax+b}+\dfrac{B}{cx+d}
P(x)(ax+b)(cx+d)2\dfrac{P(x)}{(ax+b)(cx+d)^2}Aax+b+Bcx+d+C(cx+d)2\dfrac{A}{ax+b}+\dfrac{B}{cx+d}+\dfrac{C}{(cx+d)^2}
P(x)(ax+b)(x2+c2)\dfrac{P(x)}{(ax+b)(x^2+c^2)}Aax+b+Bx+Cx2+c2\dfrac{A}{ax+b}+\dfrac{Bx+C}{x^2+c^2}

Binomial Expansions

Expand powers of binomials using the Binomial Theorem. Find specific terms and apply combination formulas (nCr) to evaluate expressions efficiently.

Formulas
Binomial expansion of (a+b)n(a+b)^n
(a+b)n=an+(n1)an1b1+(n2)an2b2++(nr)anrbr++bn(a+b)^n=a^n+\binom{n}{1}a^{n-1}b^1+\binom{n}{2}a^{n-2}b^2+\dotsm+\binom{n}{r}a^{n-r}b^r+\dotsm+b^n
General term of (a+b)n(a+b)^n
Tr+1=(nr)anrbrT_{r+1}=\binom{n}{r}a^{n-r}b^r
nCr\bm{nCr}
(nr)=n(n1)(n2)(nr+1)r!=n!r!(nr)!\dbinom{n}{r}=\dfrac{n(n-1)(n-2)\ldots(n-r+1)}{r!}=\dfrac{n!}{r!(n-r)!}
Special cases:- (n0)=1\binom{n}{0}=1- (nn)=1\binom{n}{n}=1- n!=n×(n1)×(n2)××3×2×1n!=n\times(n-1)\times(n-2)\times\ldots\times3\times2\times1- 0!=10!=1

Exponential and Logarithmic Functions

Solve exponential and logarithmic equations using laws of indices and logarithms. Understand the relationship between logs and exponents, and sketch graphs with key features.

Formulas
Laws of Indices
LawRule
Law 1am×an=am+na^m\times a^n=a^{m+n}
Law 2aman=amn\dfrac{a^m}{a^n}=a^{m-n}
Law 3(am)n=am×n(a^m)^n =a^{m\times n}
Law 4an×bn=(a×b)na^n\times b^n=(a\times b)^n
Law 5anbn=(ab)n\dfrac{a^n}{b^n}=(\dfrac{a}{b})^{n}
Special cases:- a0=1a^0=1- an=1ana^{-n}=\dfrac{1}{a^n}- a1n=ana^{\frac{1}{n}}=\sqrt[n]{a}- amn=amn=(an)ma^{\frac{m}{n}}=\sqrt[n]{a^m}=(\sqrt[n]{a})^m
Exponential and Logarithmic Conversion
y=bx    x=logbyy=b^x \iff x=\log_{b} y
- xx is known as the index- bb is known as the base: b>0,b1b>0, b \neq 1- y>0y>0
Laws of Logarithm
LawRule
Product Lawlogax+logay=logaxy\log_{a}x+\log_{a}y=\log_{a}xy
Quotient Lawlogaxlogay=logaxy\log_{a}x-\log_{a}y=\log_{a}\frac{x}{y}
Power Lawlogaxr=rlogax\log_{a}x^r=r\log_{a}x
Change of Baselogax=logcxlogcalogax=1logxa\log_{a}x=\dfrac{\log_{c}x}{\log_{c}a} \\ \log_{a}x=\dfrac{1}{\log_{x}a}
Special cases:- loga1=0\log_{a}1=0- lg1=0\lg 1 = 0- ln1=0\ln 1 = 0- logaa=1\log_{a}a=1- lg10=1\lg 10 = 1- lne=1\ln e=1- alogab=ba^{\log_{a}b}=b
Common and Natural Log
lgx=log10xlnx=logex\lg x= \log_{10} x \\ \ln x= \log_{e}x
Common logarithm is log with base 10, denoted by lgNatural logarithm is log with base ee, denoted by ln.

Geometry and Trigonometry

Build a solid foundation in spatial reasoning and geometric analysis. From coordinate geometry to trigonometric identities and proofs, this topic equips students with essential tools to solve real-world and O-Level exam problems with clarity and precision.

Coordinate Geometry

Understand how to calculate gradients, midpoints, and distances between points on a plane. Learn to derive equations of lines and circles, and apply geometric principles to prove collinearity, perpendicularity, and parallelism.

Formulas
Gradient Formula
m=y2y1x2x1m=\dfrac{y_2-y_1}{x_2-x_1}
Gradient of horizontal line is 00Gradient of vertical line is undefined
Equation of straight line
yy1=m(xx1)y-y_1=m(x-x_1)
Parallel Lines Gradient
m1=m2m_1=m_2
if line l1l_1 is parallel to line l2l_2
Perpendicular Lines Gradient
m1=1m2m_1=-\dfrac{1}{m_2}
if line l1l_1 is perpendicular to line l2l_2
Area of Rectilinear figure
Area of n-sided polygon=12x1x2xnx1y1y2yny1 \text{Area of } n\text{-sided polygon} = \frac{1}{2} \left| \begin{array}{ccccc} x_1 & x_2 & \cdots & x_n & x_1 \\ y_1 & y_2 & \cdots & y_n & y_1 \end{array} \right|
General formula for a figure with n sides: (x1y2+x2y3++xny1)(y1x2+y2x3++ynx1)\\(x_1y_2+x_2y_3+\ldots+x_ny_1)-(y_1x_2+y_2x_3+\ldots+y_nx_1)
Length of AB
AB=(x2x1)2+(y2y1)2AB=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}
Midpoint of a line
(x1+x22,y1+y22)\left( \dfrac{x_1+x_2}{2}, \dfrac{y_1+y_2}{2} \right)
Collinear points
mAB=mAC=mBCm_{AB}=m_{AC}=m_{BC}
A,BA, B and CC are collinear if they lie on the same line
Angle to x\bm{x}-axis
m=y2y1x2x1=tanθm=-\dfrac{y_2-y_1}{x_2-x_1}=\tan \theta
Equation of Circle
Standard Form Equation of a Circle
Standard form:(xa)2+(yb)2=r2(x-a)^2+(y-b)^2=r^2Centre of circle: (a,b)(a,b)Radius of circle: rr

Applications of Straight Line Graphs

Convert non-linear equations into linear form to simplify data analysis and graphing. Learn to plot relationships involving exponential, logarithmic, and power functions on straight line graphs.

Formulas
Conversion between non-linear from and linear form
Non-linear formLinear form: Y=mX+cY = mX+c
y=ax2+bxy=ax^2+bxyx=ax+b\dfrac{y}{x}=ax+b
y=kaxy=ka^xlgy=(lga)x+lgk\lg y=(\lg a)x+\lg k
y=kxny=kx^nlgy=n(lgx)+lgk\lg y=n(\lg x)+\lg k
y=aekxy=ae^{kx}lny=kx+lna\ln y=kx+\ln a
h1x+k1y=1h\dfrac{1}{x} + k\dfrac{1}{y} = 11y=hk(1x)+1k\dfrac{1}{y}=-\dfrac{h}{k}\left( \dfrac{1}{x} \right)+\dfrac{1}{k}

Trigonometric Functions and Graphs

Master the graphs of sine, cosine, and tangent functions. Identify amplitude, period, asymptotes, and interpret transformations of trigonometric graphs in real-life and mathematical contexts.

Formulas
y=asinbx,a>0\bm{y=a\sin bx, a > 0}
Standard Graph of a Sin Curve
Range: aasinbxa-a \leq a\sin bx \leq aPeriod =360b=\dfrac{360^{\circ}}{b}Amplitude =a=|a|Asymptotes: none
y=acosbx,a>0\bm{y=a \cos bx, a > 0}
Standard Graph of a Cos Curve
Range: aacosbxa-a \leq a\cos bx \leq aPeriod =360b=\dfrac{360^{\circ}}{b}Amplitude =a=|a|Asymptotes: none
y=atanbx,a>0\bm{y=a\tan bx, a > 0}
Standard Graph of a Tan Curve
Range: any real numberPeriod =180b=\dfrac{180^{\circ}}{b}Amplitude: undefinedAsymptotes: x=90b,x=270bx=\dfrac{90^{\circ}}{b}, x=\dfrac{270^{\circ}}{b}
Trigonometric Ratios
TOA CAH SOH
sinθ=oppositehypotenuse\sin \theta = \dfrac{\text{opposite}}{\text{hypotenuse}}
cosθ=adjacenthypotenuse\cos \theta = \dfrac{\text{adjacent}}{\text{hypotenuse}}
tanθ=oppositeadjacent\tan \theta = \dfrac{\text{opposite}}{\text{adjacent}}
Special Angles
θ\theta30/π630^{\circ} / \frac{\pi}{6}45/π445^{\circ} / \frac{\pi}{4}60/π360^{\circ} / \frac{\pi}{3}
sinθ\sin \theta12\dfrac{\sqrt{1}}{2}22\dfrac{\sqrt{2}}{2}32\dfrac{\sqrt{3}}{2}
cosθ\cos \theta32\dfrac{\sqrt{3}}{2}22\dfrac{\sqrt{2}}{2}12\dfrac{\sqrt{1}}{2}
tanθ\tan \theta33\dfrac{\sqrt{3}}{3}113\sqrt{3}
Negative Angles
Identities
sin(θ)=sinθ\sin (-\theta) = -\sin \theta
cos(θ)=cosθ\cos (-\theta) = \cos \theta
tan(θ)=tanθ\tan (-\theta) = -\tan \theta
Complementary Angles
Identities
sin(90θ)=cosθ\sin (90^{\circ}-\theta) = \cos \theta
cos(90θ)=sinθ\cos (90^{\circ}-\theta) = \sin \theta
tan(90θ)=1tanθ\tan (90^{\circ}-\theta) = \dfrac{1}{\tan \theta}
Reciprocals
Identities
cosecθ=1sinθ,sinθ0\cosec \theta = \dfrac{1}{\sin \theta}, \sin \theta \neq 0
secθ=1cosθ,cosθ0\sec \theta = \dfrac{1}{\cos \theta}, \cos \theta \neq 0
cotθ=1tanθ,tanθ0\cot \theta = \dfrac{1}{\tan \theta}, \tan \theta \neq 0

Trigonometric Equations and Identities

Solve trigonometric equations using identities such as Pythagorean, reciprocal, and addition formulae. Understand inverse trigonometric functions and apply R-formulae to simplify and solve expressions.

Formulas
Principal Values of Inverse Trigonometric Functions
FunctionDomainRange
y=sin1xy=\sin^{-1}x1x1-1 \leq x \leq 1π2yπ2-\dfrac{\pi}{2} \leq y \leq \dfrac{\pi}{2}
y=cos1xy=\cos^{-1}x1x1-1 \leq x \leq 10yπ0 \leq y \leq \pi
y=tan1xy=\tan^{-1}xxRx \in \mathbb{R} π2yπ2-\dfrac{\pi}{2} \leq y \leq \dfrac{\pi}{2}
Basic Trigonometric Identities
Identities
sin2θ+cos2θ=1\sin^{2} \theta + \cos^{2} \theta = 1
1+tan2θ=sec2θ1 + \tan^{2} \theta = \sec^{2} \theta
1+cot2θ=cosec2θ1 + \cot^{2} \theta = \cosec^{2} \theta
Addition Formulae
Identities
sin(A±B)=sinAcosB±cosAsinB\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B
cos(A±B)=cosAcosBsinAsinB\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B
tan(A±B)=tanA±tanB1tanAtanB\tan (A \pm B)=\dfrac{\tan A \pm \tan B}{1 \mp \tan A \tan B}
R-Formulae
Identities
asinθ±bcosθ=Rsin(θ±α)a\sin \theta \pm b\cos \theta = R\sin(\theta \pm \alpha)
acosθ±bsinθ=Rcos(θα)a\cos \theta \pm b\sin \theta = R\cos(\theta \mp \alpha)
where R=a2+b2R=\sqrt{a^2+b^2}tanα=ba\tan \alpha = \dfrac{b}{a}

Proofs in Plane Geometry

Strengthen your deductive reasoning by using congruence and similarity tests (SSS, SAS, AAS, AA) and properties of polygons and circles. Prove geometric relationships involving triangles, parallelograms, cyclic quadrilaterals, and more.

Formulas
Proofs using Properties of Triangles
Proofs using Properties of Triangles
Standard form:(xa)2+(yb)2=r2(x-a)^2+(y-b)^2=r^2Centre of circle: (a,b)(a,b)Radius of circle: rr
Proof of Equilateral Traingle
Equilateral Triangle
3 equal sides: AB=BC=ACAB = BC = AC3 equal angles: ABC=ACB=BAC\angle ABC = \angle ACB = \angle BAC
Proof of Isoceles Traingle
Isoceles Triangle
2 equal sides: AB=BCAB = BC2 equal angles: BAC=ACB\angle BAC = \angle ACB
Perpendicular Bisector
Perpendicular Bisector
Perpendicular bisector is a line that separates a line in two equal parts and is perpendicular to that line.AE=BEAE = BEABCDAB \perp CD
Angle Bisector
Angle Bisector
Angle bisector is a line that divides an angle into two equal angles.DEDE is an angle bisector of BAC\angle BACBAE=CAE\angle BAE = \angle CAE
SSS Congruency Test
SSS Congruency Test
AB=DFAB = DFAC=EFAC = EFBC=DEBC = DE
SAS Congruency Test
SAS Congruency Test
AB=DFAB = DFAC=EFAC = EFBAC=DFE\angle BAC = \angle DFE
AAS Congruency Test
AAS Congruency Test
AB=DFAB = DFABC=FDE\angle ABC = \angle FDEBAC=DFE\angle BAC = \angle DFE
AA Similarity Test
AA Similarity Test
CAB=FDE\angle CAB = \angle FDEABC=DEF\angle ABC = \angle DEF
SSS Similarity Test
SSS Similarity Test
ABDE=BCEF=ACDF=k\dfrac{AB}{DE}=\dfrac{BC}{EF}=\dfrac{AC}{DF}=k
SAS Similarity Test
SAS Similarity Test
BCEF=ACDF=k\dfrac{BC}{EF}=\dfrac{AC}{DF}=kACB=DFE\angle ACB = \angle DFE
Midpoint Theorem
Midpoint Theorem
If DD is the midpoint of ACAC and EE is the midpoint of BCBC,AB//DEAB // DEAB=2DEAB = 2DE
Parallelogram
Parallelogram
2 pairs of equal and parallel opposite sides2 pairs of equal and opposite anglesdiagonals bisect each other
Rectangle
Rectangle
2 pairs of equal and parallel opposite sides4 right anglesdiagonals are equal in length and bisect each other
Rhombus
Rhombus
4 equal sidesopposite sides are parallel2 pairs of equal opposite anglesdiagonals bisect each other at right angles
Square
Square
4 equal sidesopposite sides are parallel4 right anglesdiagonals are equal in length and bisect each other at right angles
Kite
Kite
2 pairs of equal adjacent sidesopposite angles are equalone diagonal bisects the other diagonal at right anglesone diagonal bisects a pair of opposite angles
Perpendicular Bisector of a Chord
Perpendicular Bisector of a Chord
OCABOC \perp ABAC=CBAC = CB
Equal Chord
Equal Chord
AB=CDAB = CDOX=OYOX = OY
Tangents from an external point are equal
Tangents from an external point are equal
Tangent:Tangent to a circle at any point is perpendicular to the radius drawn to that point.Tangent from an external point:The lengths of tangents drawn from an external point to a circle are equal (AC=BC)(AC = BC)OCA=OCB\angle OCA = \angle OCB
Angle at Centre =2×= 2 \times Angle at Cicumference
Angle at centre = 2 x angle at cicumference
The angle subtended at the centre of the circle is twice the angle subtended by the same arc at any point of the circumference.AOB=2×ACB\angle AOB = 2\times \angle ACB
Right angle in a semicircle
Right angle in a semicircle
angle subtended by the diameter and a point on the circumference is always 9090^{\circ}.
Angles in the same Segment
Angles in the same segment are equal
Angles in the same segment are angles at the semicircle subtended by the same arc.ACB=ADB=θ\angle ACB = \angle ADB = \theta
Angles in the opposite Segments
Angles in opposite segments are supplementary
A cyclic quadrilateral is one where all 4 of its vertices lie on the circumference of the circle.ABC+BCD+CDA+DAB=360\angle ABC + \angle BCD + \angle CDA + \angle DAB = 360^{\circ}Opposite angles of a cyclic quadrilateral add up to 180180^{\circ}ABC+CDA=180\angle ABC + \angle CDA = 180^{\circ}DAB+BCD=180\angle DAB + \angle BCD = 180^{\circ}

Calculus

Build a strong foundation in differentiation and integration to solve problems involving change, motion, and area—key skills for O-Level Additional Mathematics.

Differentiation

Learn to find derivatives using key rules and apply them to study gradients, curves, and function behavior.

Formulas
Manipulating derivatives
Derivatives
ddx[kf(x)]=kddx[f(x)]\dfrac{d}{dx}[kf(x)]=k\dfrac{d}{dx}[f(x)]
ddx[f(x)±g(x)]=ddx[f(x)]±ddx[g(x)]\dfrac{d}{dx}[f(x) \pm g(x)]=\dfrac{d}{dx}[f(x)]\pm \dfrac{d}{dx}[g(x)]
Power Rule
ddx(xn)=nxn1\dfrac{d}{dx}(x^n)=nx^{n-1}
Derivative of constant
ddx(k)=0\dfrac{d}{dx}(k)=0
Chain rule
ddx[f(x)]n=n[f(x)]n1[f(x)]\dfrac{d}{dx}[f(x)]^n=n[f(x)]^{n-1}[f'(x)]
Product rule
ddx[f(x)g(x)]=f(x)g(x)+g(x)f(x)\dfrac{d}{dx}[f(x)g(x)]=f(x)g'(x)+g(x)f'(x)
Quotient rule
ddx[f(x)g(x)]=g(x)f(x)f(x)g(x)[g(x)]2\dfrac{d}{dx}\left[ \dfrac{f(x)}{g(x)} \right]=\dfrac{g(x)f'(x)-f(x)g'(x)}{[g(x)]^2}
Trigonometric functions
ddx[sinf(x)]=f(x)cosf(x)\dfrac{d}{dx}\left[ \sin f(x) \right]=f'(x)\cos f(x)
ddx[cosf(x)]=f(x)cosf(x)\dfrac{d}{dx}\left[ \cos f(x) \right]=-f'(x)\cos f(x)
ddx[tanf(x)]=f(x)sec2f(x)\dfrac{d}{dx}\left[ \tan f(x) \right]=f'(x)\sec^2 f(x)
Derivatives of Trigonometric Functions
Derivatives of Trigonometric Functions
Trigonometric functions
ddx[sinnf(x)]=nsinn1f(x)×ddx[sinf(x)]\dfrac{d}{dx}\left[ \sin^n f(x) \right]=n\sin^{n-1} f(x) \times \dfrac{d}{dx}[\sin f(x)]
ddx[cosnf(x)]=ncosn1f(x)×ddx[cosf(x)]\dfrac{d}{dx}\left[ \cos^n f(x) \right]=n\cos^{n-1} f(x) \times \dfrac{d}{dx}[\cos f(x)]
ddx[tannf(x)]=ntann1f(x)×ddx[tanf(x)]\dfrac{d}{dx}\left[ \tan^n f(x) \right]=n\tan^{n-1} f(x) \times \dfrac{d}{dx}[\tan f(x)]
Chain rule of Exponential functions
ddx[ef(x)]=f(x)×ef(x)\dfrac{d}{dx}[e^{f(x)}]=f'(x)\times e^{f(x)}
Chain rule of logarithmic functions functions
ddx[lnf(x)]=f(x)f(x)\dfrac{d}{dx}\left[ \ln f(x) \right]=\dfrac{f'(x)}{f(x)}

Application of Differentiation

Use derivatives to solve rate of change problems, find turning points, and analyse motion through graphs.

Formulas
Rate of change - chain rule
dydt=dydx×dxdt\dfrac{dy}{dt}=\dfrac{dy}{dx}\times \dfrac{dx}{dt}
First Derivative Test
xx(x0)(x_0)^-(x0)(x_0)(x0)+(x_0)^+
dydx\dfrac{dy}{dx}++00-
sketch// - \\backslash
Test for Maximum Point
First Derivative Test
xx(x0)(x_0)^-(x0)(x_0)(x0)+(x_0)^+
dydx\dfrac{dy}{dx}-00++
sketch\\backslash - //
Test for Minimum Point
First Derivative Test
xx(x0)(x_0)^-(x0)(x_0)(x0)+(x_0)^+
dydx\dfrac{dy}{dx}++00++
sketch// - //
Test for Inflexion Point
First Derivative Test
xx(x0)(x_0)^-(x0)(x_0)(x0)+(x_0)^+
dydx\dfrac{dy}{dx}-00-
sketch\\backslash - \\backslash
Test for Inflexion Point
Second derivative test
d2ydx2\dfrac{d^2y}{dx^2}meaning
d2ydx2<0\dfrac{d^2y}{dx^2}<0maximum point
d2ydx2>0\dfrac{d^2y}{dx^2}>0minimum point
d2ydx2=0\dfrac{d^2y}{dx^2}=0use first derivative test to further proof

Integration

Understand integration as the reverse of differentiation and apply it to solve equations and evaluate areas.

Formulas
Manipulating integrals
Integrals
kf(x)dx=kf(x)dx\int kf(x) dx = k\int f(x) dx
[f(x)±g(x)]dx=f(x)dx±g(x)dx\int [f(x)\pm g(x)]dx = \int f(x) dx \pm \int g(x) dx
Power Rule
xndx=xn+1n+1+c(ax+b)ndx=(ax+b)n+1a(n+1)+c\int x^n dx = \dfrac{x^{n+1}}{n+1}+c \\ \int (ax+b)^n dx=\dfrac{(ax+b)^{n+1}}{a(n+1)}+c
where cc is an arbitrary constant
Integral of Constant
kdx=kx+c\int k dx = kx + c
where cc is an arbitrary constant
Integration of Trigonometric Functions
Trigonometric functions
cosxdx=sinx+c\int \cos x dx = \sin x + c
sinxdx=cosx+c\int \sin x dx = -\cos x + c
sec2xdx=tanx+c\int \sec^2 x dx = \tan x + c
cos(ax+b)dx=1asin(ax+b)+c\int \cos (ax+b) dx = \dfrac{1}{a} \sin (ax+b) + c
sin(ax+b)dx=1acos(ax+b)+c\int \sin (ax+b) dx = -\dfrac{1}{a} \cos (ax+b) + c
sec2(ax+b)dx=1atan(ax+b)+c\int \sec^2 (ax+b) dx = \dfrac{1}{a} \tan (ax+b) + c
where a0a \neq 0 and cc is an arbitrary constant
Integration of Exponential functions and functions in the form of 1x\frac{1}{x} and 1ax+b\frac{1}{ax+b}
Exponential functions
exdx=ex+c\int e^x dx = e^x + c
eax+bdx=1aeax+b+c\int e^{ax+b} dx = \dfrac{1}{a} e^{ax+b} + c
1xdx=lnx+c,x>0\int \dfrac{1}{x} dx = \ln x + c, x > 0
1ax+bdx=1alnax+b+c,\int \dfrac{1}{ax+b} dx = \dfrac{1}{a} \ln |ax+b| + c,
f(x)f(x)dx=lnf(x)+c\int \dfrac{f'(x)}{f(x)}dx = \ln |f(x)| + c
where a0a \neq 0 and cc is an arbitrary constant

Application of Integration

Apply definite and indefinite integrals to calculate area under curves and between lines for real-world contexts.

Formulas
Indefinite integral of the function f(x)f(x)
f(x)dx=F(x)+c\int f(x)dx = F(x) + c
where cc is a constant
Properties of Definite Integrals
Definite Integrals
abf(x)dx=F(b)F(a)\int_a^b f(x) dx = F(b) - F(a)
aaf(x)dx=0\int_a^a f(x) dx = 0
abf(x)dx=baf(x)dx\int_a^b f(x) dx = -\int_b^a f(x) dx
abkf(x)dx=kabf(x)dx\int_a^b kf(x) dx = k\int_a^b f(x) dx
acf(x)dx=abf(x)dx+bcf(x)dx\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx
ab[f(x)±g(x)]dx=abf(x)dx±abg(x)dx\int_a^b [f(x) \pm g(x)] dx = \int_a^b f(x)dx \pm \int_a^b g(x)dx
Area between y=f(x)\bm{y=f(x)} and x\bm{x}-axis
Area between the curve y=f(x) and the x-axis
Area = abf(x)dx|\int_a^b f(x) dx|
Area between x=f(y)\bm{x=f(y)} and y\bm{y}-axis
Area between the curve x=f(y) and the y-axis
Area = cdf(y)dy|\int_c^d f(y) dy|
Area between y=f(x)\bm{y=f(x)} and y=g(x)\bm{y=g(x)}
Area between the curve y=f(x) and line y=g(x)
Curve y=f(x)y=f(x) lies above the straight line y=g(x)y=g(x),Area = ab[f(x)g(x)]dx\int_a^b [f(x)-g(x)]dx
Area between y=f(x)\bm{y=f(x)} and y=g(x)\bm{y=g(x)}
Area between the curve y=f(x) and line y=g(x)
Curve y=f(x)y=f(x) lies below the straight line y=g(x)y=g(x),Area = ab[g(x)f(x)]dx\int_a^b [g(x)-f(x)]dx

Kinematics

Use calculus to relate displacement, velocity, and acceleration, and interpret motion in physical problems.

Formulas
Displacement
s=vdts = \int v dt
If s>0s>0, the particle is along the positive ss-axis.If s<0s<0, the particle is along the negative ss-axis.If s=0s=0, the particle is at a fixed point.
Velocity
v=dsdtv=adtv = \dfrac{ds}{dt} \\ v = \int a dt
If v>0v>0, the particle is moving in the direction of the positive ss-axis.If v<0v<0, the particle is moving in the direction of the negative ss-axis.If v=0v=0, the particle is at instantaneous rest.
Acceleration
a=dvdta = \dfrac{dv}{dt}
If a>0a>0, the velocity of the particle is increasing with respect to time.If a<0a<0, the velocity of the particle is decreasing with respect to time.If a=0a=0, the particle moves at constant velocity.
Kinematics Summary
Kinematics Summary
Initial t=0\Rightarrow t = 0Instantaneously at rest v=0\Rightarrow v = 0At the fixed point s=0\Rightarrow s = 0Maximum or minimum displacement dsdt=0\Rightarrow \frac{ds}{dt} = 0Maximum or minimum velocity dvdt=0\Rightarrow \frac{dv}{dt} = 0